Advanced Calculus

Midterm Exam

- 1. (12 points) Let $A = \{(x, y) \in \mathbb{R}^2 \mid x \in \mathbb{Q}\}.$
 - (a) Find A', the set of all cluster point of A. Justify your answer.

Solution: Since for any $P = (x, y) \in \mathbb{R}^2$ and for any r > 0, the open ball neighborhood $B_P(r)$ of P, satisfies that $B_P(r) \cap A \setminus \{P\} \neq \emptyset, A' = \mathbb{R}^2$.

(b) Find the boundary Bd(A). Justify your answer.

Solution: Since for any $P = (x, y) \in \mathbb{R}^2$ and for any r > 0, the open ball neighborhood $B_P(r)$ of P, satisfies that $B_P(r) \cap A \neq \emptyset$, and $B_P(r) \cap (\mathbb{R}^2 \setminus A) \neq \emptyset$, $Bd(A) = \mathbb{R}^2$.

(c) Find the interior Int(A). Justify your answer.

Solution: Since for any $P = (x, y) \in \mathbb{R}^2$ and for any r > 0, the open ball neighborhood $B_P(r)$ of P, satisfies that $B_P(r) \cap (\mathbb{R}^2 \setminus A) \neq \emptyset$, $Int(A) = \emptyset$.

2. (10 points) Let $\{U_a\}_{a \in \mathscr{A}}$ be a collection of open subsets in \mathbb{R}^p . Show that the set $U = \bigcup_{a \in \mathscr{A}} U_a$ is open in \mathbb{R}^p .

Solution: For any $q \in U$, $q \in U_a$ for some $a \in \mathscr{A}$. Since U_a is open, there exists a r > 0, such that $q \in B_a(r) \subset U_a \subset U$ which implies that U is open in \mathbb{R}^p .

3. (10 points) Show that the set $\Delta = \{(x, x) | x \in \mathbb{R}\}$ is closed in \mathbb{R}^2 . Note that the set Δ represents the graph of the function f(x) = x in \mathbb{R}^2 .

Solution: For any $P = (a,b) \notin \Delta$, letting $r = \frac{|b-a|}{2}$, we have r > 0. <u>**Claim:**</u> $\Delta \cap B_P(r) = \emptyset$ The claim obviously implies that $\mathbb{R}^2 \setminus \Delta$ is open in \mathbb{R}^2 . Hence, Δ is closed in \mathbb{R}^2 . <u>**Proof of Claim:**</u> Observe that $B_P(r) \subset Q = \{(x,y) \mid 0 \le |x-a| < r; 0 \le |x-b| < r\}$, i.e. *Q* is a square of length 2*r* with center *P*. Suppose $\Delta \cap Q \ne \emptyset$ and (c,c) is a point in $\Delta \cap Q$, then we have $0 \le |c-a| < r$ and $0 \le |c-b| < r$. But, by using the triangle inequality, we have $|b-a| = |c-a-(c-b)| \le |c-a|+|c-b| < r+r = 2r = |b-a|$ which is contradiction. Therefore, $\Delta \cap Q = \emptyset$. Since $B_P(r) \subset Q$, we have $\Delta \cap B_P(r) = \emptyset$.

4. (a) (10 points) Let $A \subset \mathbb{R}^p$. Show that $\overline{A} = A \cup A'$, where A' is the set of all cluster point of A.

Solution: For any $x \notin A \cup A'$, $x \notin A$, and $x \notin A'$. From the definition of $x \notin A'$, there is an open neighborhood U of x, such that $U \cap A = U \cap A \setminus \{x\} = \emptyset$ which also implies that $U \cap A' = \emptyset$. Therefore, U is an open neighborhood of x satisfying $U \cap (A \cup A') = \emptyset$, i.e. $x \in U \subset (A \cup A')^c$ and $(A \cup A')^c$ is open or $A \cup A'$ is a closed. Since $A \subset A \cup A'$, $A \cup A'$ is a closed set containing A. The definition of \overline{A} implies that $\overline{A} \subseteq A \cup A'$.

On the other hand, for any $x \notin \overline{A}$, $x \notin A$ and, since \overline{A} is closed, there is an open neighborhood U of x such that $U \subseteq (\mathbb{R}^p \setminus \overline{A})$ which implies that $U \cap A = \emptyset$, i.e. $x \notin A'$. This implies that $A \cup A' \subseteq \overline{A}$. Hence, we have $\overline{A} = A \cup A'$. (b) (4 points) Let $F \subset \mathbb{R}^p$ be a closed subset. By using (a), prove that F is closed if and only if it contains all its cluster points.

Solution: If *F* is closed, since $F \subseteq F$, we have $\overline{F} = F$. By using part (*a*), we get $F = \overline{F} = F \cup F'$ which implies that $F' \subseteq F$. Conversely, if $F' \subseteq F$, by part (*a*), we have $F = F \cup F' = \overline{F}$. Since \overline{F} is closed, *F* is closed.

5. (10 points) Let $A \subset \mathbb{R}^p$. Show that $Bd(A) = \overline{A} \cap \overline{A^c}$, where $A^c = \mathbb{R}^p \setminus A$ denotes the complementary set of *A* in \mathbb{R}^p .

Solution: By 4(a), $\overline{A} = A \cup A'$, and $\overline{A^c} = A^c \cup (A^c)'$, we have $\overline{A} \cap \overline{A^c}$ $= (A \cup A') \cap (A^c \cup (A^c)') = (A \cap A^c) \cup (A' \cap A^c) \cup (A \cap (A^c)') \cup (A' \cap (A^c)')$ $= (A' \cap A^c) \cup (A \cap (A^c)') \cup (A' \cap (A^c)')$. Hence, a point $x \in \overline{A} \cap \overline{A^c}$ if and only if $x \in (A' \cap A^c)$ or $x \in (A \cap (A^c)')$ or $x \in (A' \cap (A^c)')$ if and only if for any open neighborhood U of $x \quad U \cap A \neq \emptyset$ and $U \cap A^c \neq \emptyset$ if and only if $x \in Bd(A)$. Therefore, we have $\overline{A} \cap \overline{A^c} = Bd(A)$.

6. (10 points) Let X and Y be non-empty sets and let $f: X \times Y \to \mathbb{R}$ have bounded range in \mathbb{R} . Prove that $\sup_{y} \inf_{x} f(x,y) \leq \inf_{x} \sup_{y} f(x,y)$.

Solution: For each $x \in X$, and $y \in Y$, since $\inf_{x} f(x, y) \le f(x, y)$, we have $\sup_{y} \inf_{x} f(x, y) \le \sup_{y} f(x, y)$, for all $x \in X$ which implies that $\sup_{y} \inf_{x} f(x, y) \le \inf_{x} \sup_{y} f(x, y)$.

7. (10 points) Let $K \subset \mathbb{R}^p$ be a compact subset. Prove directly (without using Heine-Borel theorem) that K is closed and bounded.

Solution: <u>Proof of closedness:</u> For any $x \notin K$, the set $\{\mathbb{R}^p \setminus \overline{B_x(\frac{1}{n})} \mid n \in \mathbb{N}\}$ is an open covering of K. The compactness of K implies that there is a $m \in \mathbb{N}$ such that $K \subseteq \bigcup_{n=1}^m \mathbb{R}^p \setminus \overline{B_x(\frac{1}{n})} = \mathbb{R}^p \setminus \overline{B_x(\frac{1}{m})}$ which implies that $B_x(\frac{1}{m}) \cap K = \emptyset$ and K^c is open or K is closed. <u>Proof of boundedness:</u> Let o denote the origin of \mathbb{R}^p . The set $\{B_o(n) \mid n \in \mathbb{N}\}$ is an open covering of \mathbb{R}^p , hence it is an open covering of K. The compactness of K implies that there is a $m \in \mathbb{N}$ such that $K \subset \bigcup_{n=1}^m B_o(n) = B_o(m)$ which implies that K is bounded.

8. (10 points) Let *C* be an open, connected subset of \mathbb{R}^p , and *W* be any set satisfying that $C \subseteq W \subseteq \overline{C}$. Show that *W* is connected.

Solution: Suppose that *W* is disconnected and *A*, *B* are two open sets separating *W*. Since $A \cap W \neq \emptyset$ and $W \subseteq \overline{C} = C \cup C'$, we have $\emptyset \neq A \cap \overline{C} = (A \cap C) \cup (A \cap C')$ which implies that $A \cap C \neq \emptyset$. By using a similar argument, we have $B \cap C \neq \emptyset$. This implies that *A*, *B* separate *C* which contradicts to that *C* being connected. Hence, *W* is connected.

- 9. Let C_1, C_2 be open, connected subsets of \mathbb{R}^p . Assume that $C_1 \cap C_2 \neq \emptyset$.
 - (a) (4 points) Is it true that $C_1 \cap C_2$ is always connected? Why?

Solution: No, consider $C_1 = \{(x,y) \in \mathbb{R}^2 \mid 1 < x^2 + y^2 < 4, y > -\frac{1}{2}\}$ and $C_2 = \{(x,y) \in \mathbb{R}^2 \mid 1 < x^2 + y^2 < 4, y < \frac{1}{2}\}$, then both C_1, C_2 are open, connected subsets of \mathbb{R}^2 , while $C_1 \cap C_2$ is disconnected.

(b) (10 points) Show that $C_1 \cup C_2$ is connected.

Solution: Suppose that $C_1 \cup C_2$ is disconnected and A, B are two open sets separating $C_1 \cup C_2$. Let x be a point in $C_1 \cap C_2$, and assume that $x \in A$. Then $A \cap C_1 \neq \emptyset$ and $A \cap C_2 \neq \emptyset$. Since $C_1 \cup C_2 = A \cup B$, we get either $C_1 \cap B \neq \emptyset$ or $C_2 \cap B \neq \emptyset$ which would imply A, B separate either C_1 or C_2 , respectively. Either case contradicts to that both C_1, C_2 are connected. Hence, $C_1 \cup C_2$ is connected.